

Presentation to
The Distributed Energy Road Show
Bloomington, Minnesota
Tuesday, May 13, 2003
John J. Cuttica
Midwest CHP Application Center

Presentation Outline

CHP: The Concept

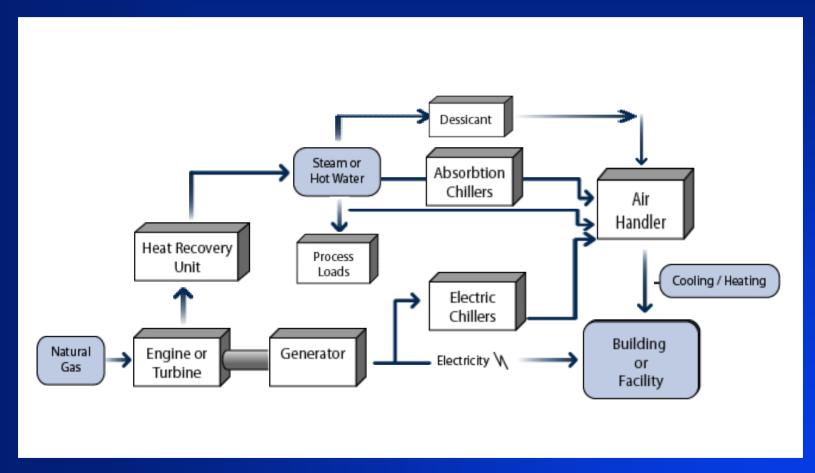
CHP: The Technologies

CHP: The Economics

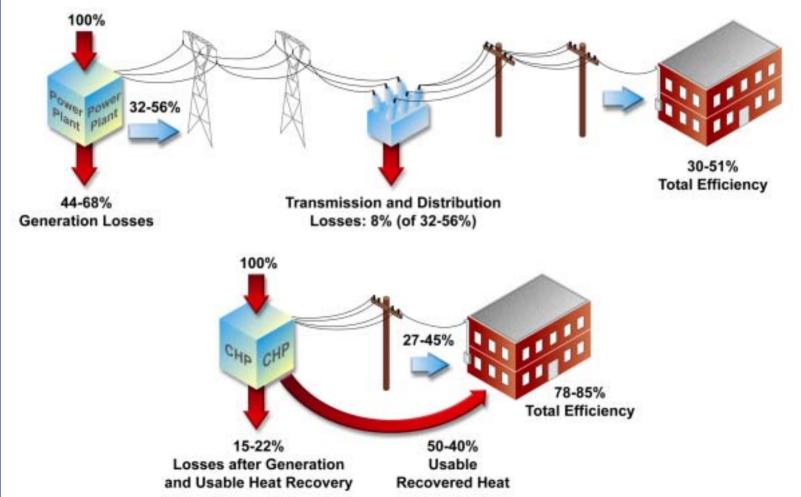
CHP Assistance in the Midwest

What is CHP?

- Integrated System
- Located At or Near a Building/Facility
- Provides a Portion of the Electrical Load
- Utilizes the Thermal Energy
 - Cooling
 - Heating
 - Dehumidification
 - Process Heat


CHP System Sizes (Terminology)

System Designation	Size Range	Comments	
Mega	50 to 100+ MWe	Very Large IndustrialUsually Multiple Smaller UnitsCustom Engineered Systems	
Large	10's of MWe	Industrial & Large CommercialUsually Multiple Smaller UnitsCustom Engineered Systems	
Mid	10's of kWe to Several MWe	Commercial & Light IndustrialSingle to Multiple UnitsPotential Packaged Units	
Micro	<60 kWe	Small Commercial & ResidentialAppliance Like	


Typical Commercial CHP System

How CHP Saves Energy

Benefits of CHP

High Efficiency, On-Site Generation Means ...

- Improved Reliability
- Lower Energy Costs
- Better Power Quality
- Lower Emissions (including CO2)

- Support Grid Infrastructure
 - -Fewer T&D Constraints
 - -Defer Costly Grid Upgrades
 - -Price Stability
- Provides Standby Power Facilitates Deployment of **New Clean Energy Technologies**
 - Enhances Competition

Top 10 Impediments to CHP

- 6. Assessing CHP Value (Beyond Energy Cost Reduction)
 Hard to Identify, Quantify, and Allocate Among Parties
- 7. Stakeholder Apathy
 Lack of Incentive for Facility Managers and Engineering Firms
 to Try Something Different
- 8. High First Cost
 Discourages Investment Despite Life Cycle Benefits
- 9. Electric Restructuring
 Creates Uncertainty and a "Wait and See" Attitude
- 10. Too Few Case Studies
 Inconsistent, Hard to Find, and Often Incomplete in
 Financial Details

Top 10 Impediments to CHP

1. Interconnection

Inconsistent Standards, Complex Process, Network Issues and Unpredictable or High Costs

2. Utility Tariffs

Standby Charges and General Rate Design

3. Electric Utility Response

Often Times Ambivalent at Best, Hostile at Worse

4. Lack of Familiarity

With CHP Technologies, Concepts, and Environmental Benefits

5. Permitting Process

Sometimes Long, Cumbersome, and Costly

Key Factors for CHP Attractiveness

- Coincident Needs for Power & Thermal Energy
- Cost of Buying Electric Power from the Grid Relative to the Cost of Natural Gas

a.k.a "Spark Spread"

 Installed Cost Differential Between a Conventional and a CHP System

Candidate Applications for CHP

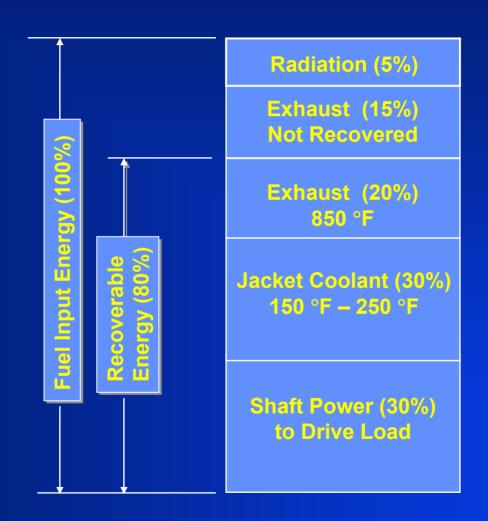
- Hospitals
- Universities
- Industrial Facilities
- Institutional Buildings
- High Rise Hotels
- Fitness Centers

- High Schools
- Office Buildings
- High Security Loads
- High Reliability Loads
 - Data Centers
 - Telephone Switching

Reliable CHP Technologies

- Electric Generation Equipment
 - Reciprocating Engines

- Turbines / Microturbines / Fuel Cells



Reciprocating Engines

- Fastest Selling, Least Expensive CHP Prime Mover Technology Below 5 MW
- Typical Power Range: 5 kW 10 MW
- Efficiency Range: ≈ 25% 40% LHV
- Part Load Operation: OK
- Type of Engines:
 - Spark Ignited --- Natural Gas / Gasoline / Biogas
 - Compression Ignition --- Diesel
 - Dual Fuel –Diesel Pilot

Reciprocating Engine - Heat Balance

Gas / Combustion Turbines (How Do They Work)

- Burns Gas or Liquid Fuel at High Pressure
- Expand Hot Products of Combustion Through Turbine Blades Mounted On A Shaft
- Produces A High Speed Rotary Motion
- Drives An Electric Generator, Producing Electric Power
- High Temperature Exhaust For Heat Recovery

Gas / Combustion Turbines

- Available Size Range: 500 kW Hundreds of MW
- Typical for CHP: Several MWs to Tens of MWs
- Efficiency Range: 25% to 40% LHV (Simple Cycle)
- Typically 3 Configurations:
 - Simple Cycle (Most Common in CHP)
 - Recuperated
 - Combined Cycle
- Thermal (Recoverable) Energy:
 - Exhaust Gas @ 900 °F to 1100 °F
 - Excellent for High Grade Steam @ 150 psig and Higher

Microturbines

Small Turbines with Recuperation

Capacity Range: 25 kW to 400 kW

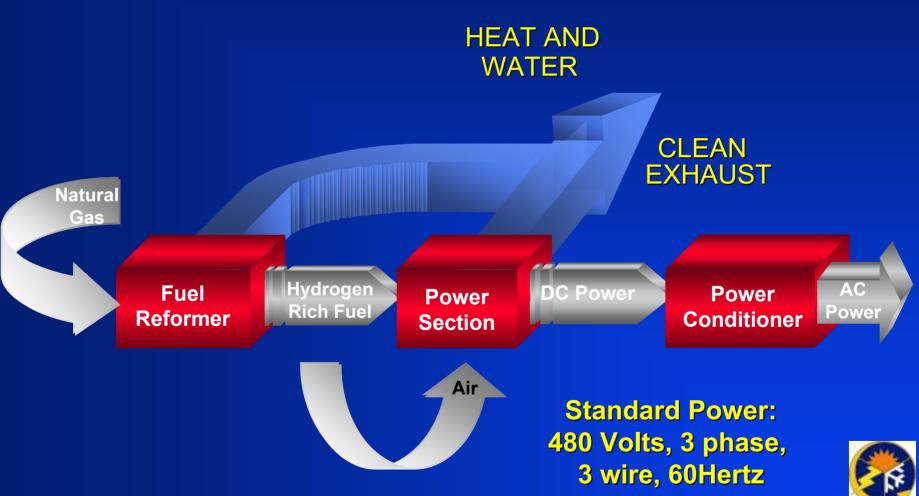
Efficiency Range: 25% to 30% LHV

Recoverable Heat:

Gas Exhaust @ Approximately 500 °F

Microturbines

- Advantages:
 - Compact Size
 - Low Emissions (< 0.49 lbs/MWh or 9 ppm)
 - Fuel Flexibility
 - Modular
 - Lower Maintenance
 - » No Oil Change (Applicable to Some Units)
 - » No Spark Plug Change
 - » No Valves
 - » Small # of Moving Parts
 - Quicker Start

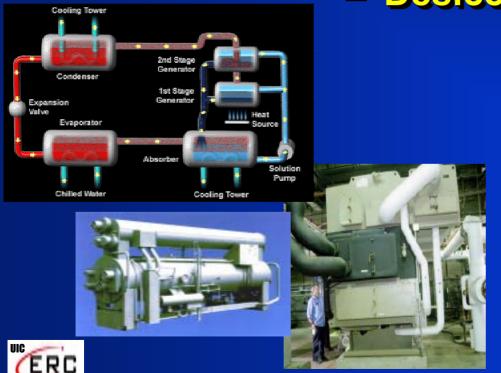

Microturbines

- Disadvantages:
 - Early Market Price Uncertainty
 - Moderate Conversion Efficiencies
 - Poor Part Load Operation
 - Requires High Pressure Gas (Up to 80 psig) or Gas Compressor
 - Efficiency and Output Sensitive to Ambient Temperature

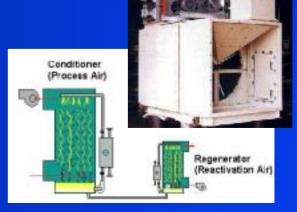
Fuel Cell System Scheme

Fuel Cells (Rules-of-Thumb)

Fuel Cell Type	Availability	Efficiency	Operating Temperature	Heat Utilization
Phosphoric Acid (PAFC)	Commercial >\$3,500/kW	38 – 45%	480 °F	Hot Water
Solid Oxide (SOFC)	Demonstration	40 – 45%	1,800°F	High Pressure Steam
Molten Carbonate (MCFC)	Demonstration	50 – 60%	1,200°F	Medium to High Pressure Steam
Proton Exchange Membrane (PEM)	Demonstration	33 –45%	175°F	Hot Water

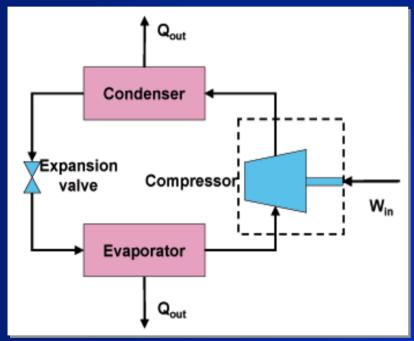


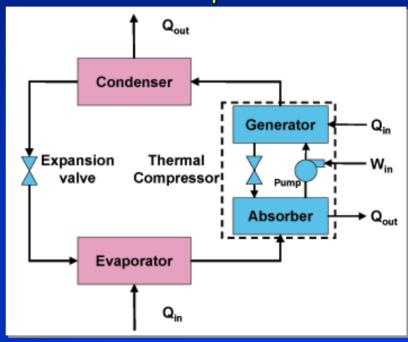
Reliable CHP Technologies


Thermally Activated Technologies

Absorption Chillers

Desiccant Dehumidification




Chiller Types

Mechanical Chiller

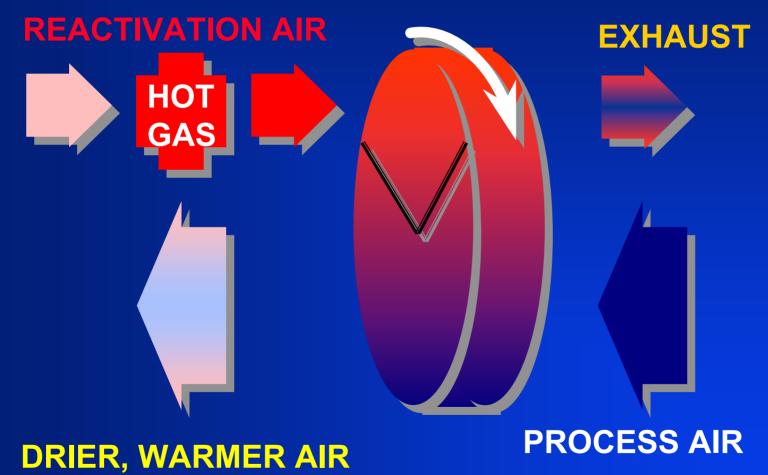
- Electric Motors
- Reciprocating Engines
- Combustion Turbines
- Steam Turbine

Thermal Absorption Chiller

- Direct Combustion
- Waste Heat Fired
 - Steam
 - Hot Water
 - Hot Exhaust Gas 23

Thermally Activated Chiller Solution Types

- Solutions Generally Used Are:
 - Water as the Refrigerant and Lithium Bromide as the Absorbent
 - Ammonia as the Refrigerant and Water as the Absorbent
 - Heat Recovery Applications Generally Use:
 - » Single Effect
 - » Water/Lithium Bromide

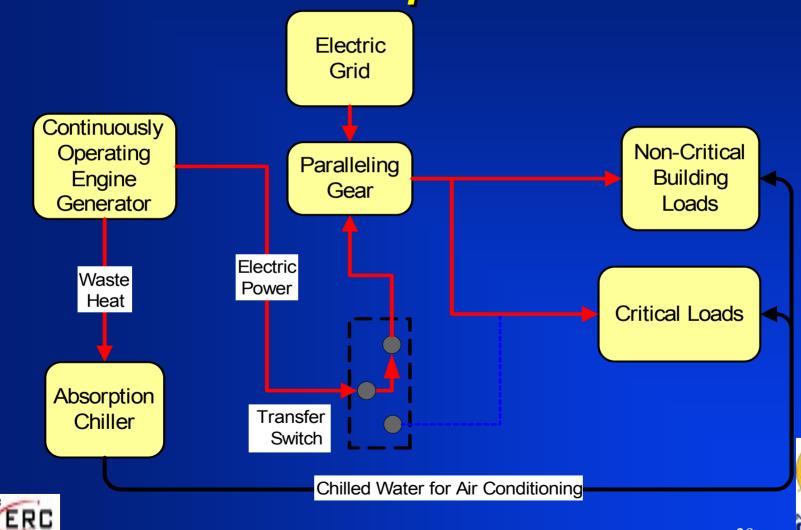

Thermally Activated Technologies (Desiccant Dehumidification)

- Removes Moisture From Air (Latent Load)
 - Reduces the Demand on the Cooling System to Reduce Humidity
 - Improves Indoor Air Quality
 - » Reducing Mold Growth
 - » Reducing "Over Cooling"
 - » Allowing Higher Make-Up Air Rates for the Same Energy Usage
- Two Types Available:
 - Solid Desiccants
 - Liquid Desiccants (Kills Bacteria & Viruses)

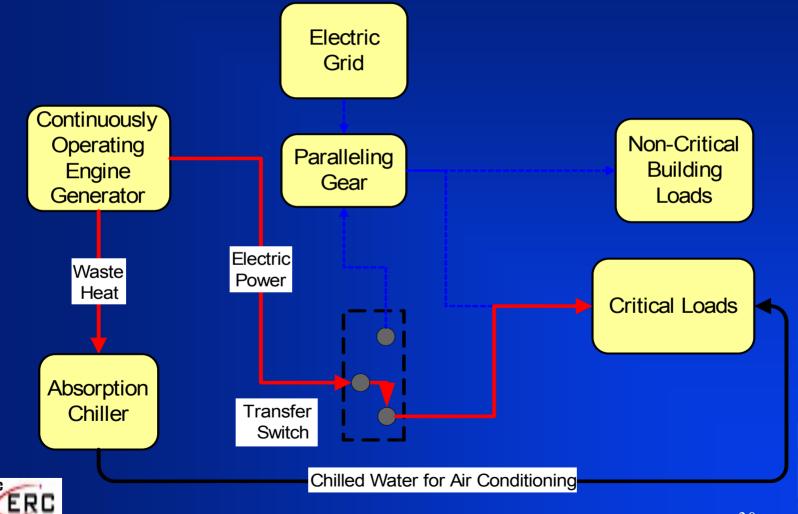
Desiccant Dehumidification Active Desiccant Wheels

Other Components

- **Grid Interconnect:**
 - Isolation Switch
 - Switchgear
 - Protection Relays
 - » Voltage » Current
 - » Frequency » Power
 - Synchronizing Equipment
- Installation:
 - Equipment Footprint
 - Floor Loading
 - Proximity To HVAC Equipment
 - Number of Electrical Feeds


CHP Can Supply Power Back-Up

- Redirect Generator Output to Emergency Circuits During a Power Outage
- CHP Turns an OVERHEAD EXPENSE (Back-Up Generators) into a PROFITABLE ASSET



How Can CHP Serve As Back-Up Power Normal Operation

How Can CHP Serve As Back-UP Power During Power Outage

CHP -- Economics

- Most CHP Systems Operate During Peak Demand or Peak Energy Periods
- Most CHP Systems Can Produce Power for Approximately 5 to 6 cents per kWh
- A Typical 1000 kW CHP System Can Save From \$135k to \$200k Annually
- A 1000 kW CHP System Is Typically Installed for \$900 to \$1200 per kW

CHP -- Economics

- Most CHP Systems Have a Payback of 4 to 7 Years But ...
 - Paybacks Can Be Reduced If Standby Generator Sets Were Going To Be Installed
- Factors That Impact CHP Installations:
 - Packaged vs. Site Constructed
 - Proximity to Electric Services & Thermal Usage
 - Site Modifications Structure for CHP System
 - Electric Interconnect Costs
 - Permitting Costs

CHP Assistance In The Midwest Midwest CHP Application Center

- Partnership UIC/ERC & GTI
- Located at the Univ. of Illinois at Chicago
- Areas Served: Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, Wisconsin
- Services:
 - Information
 - Education

CHP Is A Triple Win

Saves Money

--- End User

 Energy Efficiency and Cleaner Environment --- Government

Provides Business
 Opportunity

--- Industry

For Further Information

Contact:
Midwest CHP Application Center
John Cuttica

cuttica@uic.edu (312) 996-4382

Leslie Farrar

Lfarrar@uic.edu (312) 413-3835

